Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Kent
    Swedish Defence University, Department of Military Studies, Military-Technology Division. National Defence University, Helsinki, Finland.
    Modeling the impact of surface emissivity on the military utility of attack aircraft2017In: Aerospace Science and Technology, ISSN 1270-9638, E-ISSN 1626-3219, Vol. 65, p. 133-140Article in journal (Refereed)
    Abstract [en]

    An analysis scheme and a mission system model were applied to the evaluation of the military utility of efforts to reduce infrared signature in the conceptual design of survivable aircraft. The purpose is twofold: Firstly, to contribute to the development of a methodological framework for assessing the military utility of spectral design, and secondly to assess the threat from advances in LWIR sensors and their use in surface-to-air-missile systems. The modeling was specifically applied to the problem of linking the emissivity of aircraft coatings to mission accomplishment. The overall results indicate that the analysis scheme and mission system model applied are feasible for assessing the military utility of spectral design and for supporting decision-making in the concept phase. The analysis of different strike options suggests that LWIR sensors will enhance the military utility of low emissive paint, at least for missions executed in clear weather conditions. Furthermore, results corroborate and further clarify the importance of including earthshine when modeling.

  • 2.
    Marcus, Carina
    et al.
    Saab AB, Linköping, Sweden; Linköpings Universitet, Sweden.
    Andersson, Kent
    Swedish Defence University, Department of Military Studies, Science of Command and Control and Military Technology Division, Military Technology Systems Section. National Defence University, Helsinki, Finland.
    Åkerlind, Christina
    Försvarets Forskningsinstitut, FOI, Sweden; Linköping University, Linköping, Sweden.
    Balancing the radar and long wavelength infrared signature properties in concept analysis of combat aircraft – A proof of concept2017In: Aerospace Science and Technology, ISSN 1270-9638, E-ISSN 1626-3219, Vol. 71, p. 733-741Article in journal (Refereed)
    Abstract [en]

    Designing combat aircraft with high military effectiveness, affordability and military suitability requires balancing the efforts of many engineering disciplines during all phases of the development. One particular challenge is aircraft survivability, the aircraft's ability to avoid or withstand hostile actions. Signature management is one way of increasing the survivability by improving the ability to avoid detection. Here, the long-wave infrared and radar signatures are studied simultaneously in a mission context. By establishing a system of systems approach at mission system level, the risk of sub optimization at a technical level is greatly reduced. A relevant scenario is presented where the aim is to incapacitate an air-defense system using three different tactics: A low-altitude cruise missile option, a low and medium altitude combat aircraft option. The technical sub-models, i.e. the properties of the signatures, the weapons and the sensors are modeled to a level suitable for early concept development. The results from the scenario simulations are useful for a relative comparison of properties. Depending on the situation, first detection is made by either radar or infrared sensors. Although the modeling is basic, the complexity of the infrared signature and detection chain is demonstrated and possible pivot points for the balancing of radar and IR signature requirements are identified. The evaluation methodology can be used for qualitative evaluation of aircraft concepts at different design phases, provided that the technical models are adapted to a suitable level of detail.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf