Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bundschuh, Jochen
    et al.
    Univ Southern Queensland, Deputy Vice Chancellors Off Res & Innovat, West St, Toowoomba, Qld 4350, Australia.;Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia.;Univ Southern Queensland, Fac Hlth Engn & Sci, West St, Toowoomba, Qld 4350, Australia.;KTH Royal Inst Technol, Dept Sustainable Dev Environm Sci & Engn, KFH Internat Groundwater Arsen Res Grp, Teknikringen 76, SE-10044 Stockholm, Sweden..
    Maity, Jyoti Prakash
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia.;Natl Chung Cheng Univ, Dept Earth & Environm Sci, 168 Univ Rd, Min Hsiung 62102, Chiayi County, Taiwan..
    Mushtaq, Shahbaz
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia..
    Vithanage, Meththika
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia.;Natl Inst Fundamental Studies, Chem & Environm Syst Modeling Res Grp, Kandy 20000, Sri Lanka..
    Seneweera, Saman
    Univ Southern Queensland, Ctr Crop Hlth, West St, Toowoomba, Qld 4350, Australia..
    Schneider, Jerusa
    Univ Estadual Campinas, Sch Civil Engn Architecture & Urban Design, Sanitat & Environm Dept, BR-11308388 Campinas, SP, Brazil..
    Bhattacharya, Prosun
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia.;KTH Royal Inst Technol, Dept Sustainable Dev Environm Sci & Engn, KFH Internat Groundwater Arsen Res Grp, Teknikringen 76, SE-10044 Stockholm, Sweden..
    Khan, Nasreen Islam
    Australian Natl Univ, Coll Med Biol & Environm, Canberra, ACT 0200, Australia.;Int Rice Res Inst, GIS Social Sci Div, Los Banos 4031, Laguna, Philippines..
    Hamawand, Ihsan
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia..
    Guilherme, Luiz R. G.
    Fed Univ Lavras UFLA, Dept Soil Sci, Campus Univ,Caixa Postal 3037, BR-37200000 Lavras, MG, Brazil..
    Reardon-Smith, Kathryn
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia..
    Parvez, Faruque
    Columbia Univ, Sch Publ Hlth, Dept Environm Hlth Sci Mailman, 722 West 168th St, New York, NY 10032 USA..
    Morales-Simfors, Nury
    Swedish Defence University, Department of Military Studies, Science of Command and Control and Military Technology Division, Military Technology Applications Section.
    Ghaze, Sara
    Univ Southern Queensland, Fac Hlth Engn & Sci, West St, Toowoomba, Qld 4350, Australia..
    Pudmenzky, Christa
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia..
    Kouadio, Louis
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld 4350, Australia..
    Chen, Chien-Yen
    Natl Chung Cheng Univ, Dept Earth & Environm Sci, 168 Univ Rd, Min Hsiung 62102, Chiayi County, Taiwan..
    Medical geology in the framework of the sustainable development goals2017In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 581, p. 87-104Article in journal (Refereed)
    Abstract [en]

    Exposure to geogenic contaminants (GCs) such as metal(loid)s, radioactive metals and isotopes as well as transuraniums occurring naturally in geogenic sources (rocks, minerals) can negatively impact on environmental and human health. The GCs are released into the environment by natural biogeochemical processes within the near-surface environments and/or by anthropogenic activities such as mining and hydrocarbon exploitation as well as exploitation of geothermal resources. They can contaminate soil, water, air and biota and subsequently enter the food chain with often serious health impacts which are mostly underestimated and poorly recognized. Global population explosion and economic growth and the associated increase in demand for water, energy, food, and mineral resources result in accelerated release of GCs globally. The emerging science of "medical geology" assesses the complex relationships between geo-environmental factors and their impacts on humans and environments and is related to the majority of the 17 Sustainable Development Goals in the 2030 Agenda of the United Nations for Sustainable Development. In this paper, we identify multiple lines of evidence for the role of GCs in the incidence of diseases with as yet unknown etiology (causation). Integrated medical geology promises a more holistic understanding of the occurrence, mobility, bioavailability, bio-accessibility, exposure and transfer mechanisms of GCs to the food-chain and humans, and the related ecotoxicological impacts and health effects. Scientific evidence based on this approach will support adaptive solutions for prevention, preparedness and response regarding human and environmental health impacts originating from exposure to GCs.

  • 2.
    Oriangi, George
    et al.
    Department of Geography, Geo-Informatics, and Climatic Sciences, Makerere University, Uganda; Department of Physical Geography and Ecosystem Science, Lund University, Sweden; Department of Geography, Gulu University, Uganda.
    Albrecht, Frederike
    Department of Earth Sciences, Centre of Natural Hazards and Disaster Science, Uppsala University, Sweden.
    Di Baldassarre, Giuliano
    Department of Earth Sciences, Centre of Natural Hazards and Disaster Science, Uppsala University, Sweden.
    Bamutaze, Yazidhi
    Department of Geography, Geo-Informatics, and Climatic Sciences, Makerere University, Uganda.
    Mukwaya, Paul Isolo
    Department of Geography, Geo-Informatics, and Climatic Sciences, Makerere University, Uganda.
    Ardö, Jonas
    Department of Physical Geography and Ecosystem Science, Lund University, Sweden.
    Pilesjö, Petter
    Department of Physical Geography and Ecosystem Science, Lund University, Sweden.
    Household resilience to climate change hazards in Uganda2020In: International Journal of Climate Change Strategies and Management, ISSN 1756-8692, E-ISSN 1756-8706Article in journal (Refereed)
    Abstract [en]

    Purpose – As climate change shocks and stresses increasingly affect urban areas in developing countries, resilience is imperative for the purposes of preparation, recovery and adaptation. This study aims to investigate demographic characteristics and social networks that influence the household capacity to prepare, recover and adapt when faced with prolonged droughts or erratic rainfall events in Mbale municipality in Eastern Uganda.

    Design/methodology/approach – A cross-sectional research design was used to elicit subjective opinions. Previous studies indicate the importance of subjective approaches for measuring social resilience but their use has not been well explored in the context of quantifying urban resilience to climate change shocks and stresses. This study uses 389 structured household interviews to capture demographic characteristics, social networks and resilience capacities. Descriptive and inferential statistics were used for analysis.

    Findings – The ability of low-income households to meet their daily expenditure needs, household size, and networks with relatives and non government organizations (NGOs) were significant determinants of preparedness, recovery and adaptation to prolonged droughts or erratic rainfall events.

    Practical implications – The results imply that policymakers and practitioners have an important role vis-à-vis encouraging activities that boost the ability of households to meet their daily expenditure needs, promoting small household size and reinforcing social networks that enhance household resilience.

    Originality/value – Even the low-income households are substantially more likely to prepare for and recover from prolonged droughts or erratic rainfall events if they can meet their daily expenditure needs. This finding is noteworthy because the poorest in society are generally the most vulnerable to hazards.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf