Five technology forecast reports from the Fraunhofer Institute have been reviewed by staff at the Department of Military-Technology at the Swedish Defence University. The task given by the Swedish Defence Material Administration (FMV) was to assess the military utility of the given technologies in a time frame to 2040 from a Swedish Armed Forces’ (SwAF) perspective.
We assess the military utility of a certain technology based on its contribution to the operational capabilities of the SwAF, according to identified relevant scenarios. It should be noted that the military utility of the technology in this report is assessed solely in the presented scenario, not for the technology in any other scenarios. Since a new capability catalogue is under development at the SwAF Headquarters, we will only present general assessments of the capability impact from the technologies under study.
After the seminars, the technologies were grouped into three classes; technologies with potentially significant, uncertain or negligible military utility. The classification uncertain is given for technologies that are difficult to put into the two other classes, and not because a high technology readiness level (TRL) will not be reached by 2040.
The following technologies were assessed to have a potential for significant military utility;
3D Printers
Our overall assessment is that 3D printing has significant potential for military utility, possibly disruptive. Logistic concepts for both national and expeditionary missions will be affected in the 2040 time frame. The technology development will be driven by civilian industry, but a SwAF in-depth study is recommended as it could help form potential logistic concepts and determine what methods and systems are suitable for military adoption and what kind of application-specific issues have to be addressed in order to take full advantage of the new technology.
Deep Learning
The military utility for deep learning is assessed to be significant, primarily regarding SIGINT and IMINT, which is where the greatest utility can be seen. The driving force as regards research in the field is the private sector. We therefore recommend that the SwAF follow the research conducted and focus studies on how and where deep learning can be implemented within the organization.
Nanothermites
We suggest that a deeper study into the feasibility of nanothermite munitions and their possible military utility is carried out, since they are assessed to have a potential for significant military utility. Some of the remaining challenges include resolving risks and uncertainties pertaining to health, legality and material development. We also suggest that nanothermites should be incorporated as a future area of interest within the SwAF R&D projects.
Unmanned Surface Vessels
USV could be used for many tasks that are dull, difficult and dangerous. If employed to search for submarines they are expected to lower the cost of personnel, enhance the readiness level and increase the probability of finding hostile submarines. Therefore, we assess that USV have potential for significant military utility. The effectiveness of USV for the SwAF will depend greatly on how the platforms are incorporated into the organization. Research on how to use the USV tactically will likely be imperative if the technology is to reach its full potential. We recommended that the SwAF should follow the development and pursue research on USV before acquiring own platforms.
Structural Health Monitoring
Structural health monitoring is a key part when utilizing kinodynamic motion planning in automated and autonomous systems; therefore it will affect the capability of all systems that rely on kinodynamic motion planning. This technology has the capacity to enhance the capabilities of automatic and autonomous systems. Therefore, our assessment is that structural health monitoring has significant potential for military utility
No technology was assessed to have uncertain or negligible military utility.
The result of our technology forecast is different from previous years since all the technologies were assessed to have significant potential for military utility. The reason for this is assumed to be because these technologies have been selected by a board of experts from the SwAF and the Defence Materiel Administration, (FMV), as well as from a number of interesting, potentially disruptive technologies proposed by the Fraunhofer Institute. Furthermore, the Fraunhofer Institute estimates that all technologies in this report will reach high TRL levels, mostly 8 and 9 by 2035.
The method used in this technology forecast report was to assign each Fraunhofer report to one reviewer in the working group. First, a summary of each forecast report was made. The Fraunhofer assessment of technical readiness level (TRL) in the time period to 2035 was held to be correct. The technology was then put into one scenario that was assumed to be suitable in order to assess the military utility as well as indicate possibilities and drawbacks of the technology. Based on a SWOT analysis, an assessment of the capability impact was made. An improvement this year is that the footprint table has been adjusted to the one used by NORDEFCO, presenting the assessed contribution to the factors DOTMPLFI (Doctrine, Organization, Training, Materiel, Personnel, Leadership, Facilities and Interoperability). Furthermore, the demands that are expected to be put on the SwAF R&D in order to facilitate the introduction of the technology were indicated. Finally, conclusions regarding the potential military utility of each technology were drawn. We believe that this information could be used as decision support for future R&D investments.
The chosen definition of military utility clearly affects the result of the study. The definition of the military utility of a certain technology is its contribution to the operational capabilities of the SwAF within identified relevant scenarios and is the same as used in the Technology Forecast of 2013 and 2014. This definition is believed to be good enough for this
report but could be further elaborated in the future. An article that in-depth presents our concept of military utility has recently been published.1
Our evaluation of the method used shows that there is a risk that the assessment is biased because of the participating experts’ presumptions and experiences from their own field of research. The scenarios that were chosen do not cover all aspects of the technologies and their possible contribution to operational capabilities. It should be stressed that we have assessed potential military utility of the five technologies within the specific presented scenarios, not the technology itself. Any additional results found in the analysis are mentioned.
The greatest value of the method used is its simplicity, cost effectiveness and not least the tradeoff that it promotes learning within the working group. The composition of the working group and the methodology used are believed to provide for a broad and balanced coverage of the technologies under study. This report provides executive summaries of the Fraunhofer reports and the intention is to help the SwAF Headquarters evaluate the military utility of emerging technologies within identified relevant scenarios.
Overall, the quality of the Fraunhofer reports is considered to be balanced and of a high level of critical analysis regarding technology development. However, the report on Unmanned Surface Vessels was found to have a somewhat lower quality than the other reports, for instance, some parts of the text are copied and pasted from last year’s report on UCAV and some parts of the assessments are missing, e.g. in the TRL evaluation. Nonetheless, the reports are in line with our task of evaluating the military utility of the emerging technologies.
Stockholm: Försvarshögskolan (FHS), 2015. , p. 26