Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Manufacturing and characterization of a ceramic microcombustor with integrated oxygen storage and release element
Uppsala University. (Division of Microsystems Technology)
Swedish National Defence College, Department of Military Studies, Military-Technology Division. Uppsala University. (Ångström Space Technology Centre)ORCID iD: 0000-0002-0501-0887
Uppsala University. (Division of Microsystems Technology)
Uppsala University. (Division of Microsystems Technology)
Show others and affiliations
2015 (English)In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 25, no 10, 104006Article in journal (Refereed) Published
Abstract [en]

A microscale ceramic high-temperature combustor with a built-in temperature sensor and source of oxygen has been designed, manufactured and characterized. The successful in situ electroplating and oxidation of copper, and the use of copper oxide as the source of oxygen were demonstrated. It was shown that residual stresses from electroplating, copper oxidation and oxide decomposition did not cause much deformation of the substrate but influenced mainly the integrity and adhesion of the metal films. The process had influence on the electrical resistances, however. Calibration of the temperature sensor and correlation with IR thermography up to 1000 °C revealed a nearly linear sensor behavior. Demonstration of combustion in a vacuum chamber proved that no combustion had occurred before release of oxygen from the metal oxide resource.

Place, publisher, year, edition, pages
Bristol: Institute of Physics Publishing (IOPP), 2015. Vol. 25, no 10, 104006
Keyword [en]
isotopic analysis, HTCC, combustor, EDS, TGA, RGA, oxygen release
National Category
Aerospace Engineering
Research subject
Militärteknik
Identifiers
URN: urn:nbn:se:fhs:diva-5855DOI: 10.1088/0960-1317/25/10/104006ISI: 000366827400007OAI: oai:DiVA.org:fhs-5855DiVA: diva2:899613
Funder
Swedish National Space Board
Available from: 2016-02-02 Created: 2016-02-02 Last updated: 2017-01-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sturesson, Peter
By organisation
Military-Technology Division
In the same journal
Journal of Micromechanics and Microengineering
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf