Logo: to the web site of the Swedish Defence University

fhs.se
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermomechanical properties and performance of ceramic resonators for wireless pressure reading at high temperatures
Swedish Defence University, Department of Military Studies, Military-Technology Division. Uppsala University. (Ångström Space Technology Centre)ORCID iD: 0000-0002-0501-0887
Uppsala University. (Division of Microsystems Technology)
Uppsala University. (Division of Microsystems Technology)
Uppsala University. (Division of Microsystems Technology)
Show others and affiliations
2015 (English)In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 25, no 9, article id 095016Article in journal (Refereed) Published
Abstract [en]

This paper reports on the design, fabrication, and thermomechanical study of ceramic LC resonators for wireless pressure reading, verified at room temperature, at 500 °C and at 1000 °C for pressures up to 2.5 bar. Five different devices were fabricated from high-temperature co-fired ceramics (HTCC) and characterized. Alumina green tape sheets were screen printed with platinum paste, micromachined, laminated, and fired. The resulting samples were 21 mm  ×  19 mm with different thicknesses. An embedded communicator part was integrated with either a passive backing part or with a pressure-sensing element, including an 80 µm thick and 6 mm diameter diaphragm. The study includes measuring thermally and mechanically induced resonance frequency shifts, and thermally induced deformations. For the pressure sensor device, contributions from changes in the relative permittivity and from expanding air trapped in the cavity were extracted. The devices exhibited thermomechanical robustness during heating, regardless of the thickness of the backing. The pressure sensitivity decreased with increasing temperature from 15050 ppm bar−1 at room temperature to 2400 ppm bar−1 at 1000 °C, due to the decreasing pressure difference between the external pressure and the air pressure inside the cavity.

Place, publisher, year, edition, pages
Bristol: Institute of Physics Publishing (IOPP), 2015. Vol. 25, no 9, article id 095016
Keywords [en]
wireless reading, HTCC, pressure sensing, harsh environments, thermomechanical properties
National Category
Aerospace Engineering
Research subject
Military Technology
Identifiers
URN: urn:nbn:se:fhs:diva-5854DOI: 10.1088/0960-1317/25/9/095016ISI: 000365167700023OAI: oai:DiVA.org:fhs-5854DiVA, id: diva2:899608
Funder
Knut and Alice Wallenberg FoundationAvailable from: 2016-02-02 Created: 2016-02-02 Last updated: 2019-09-04Bibliographically approved
In thesis
1. Sense, Actuate and Survive: Ceramic Microsystems for High-Temperature Aerospace Applications
Open this publication in new window or tab >>Sense, Actuate and Survive: Ceramic Microsystems for High-Temperature Aerospace Applications
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In aerospace applications, but also in manufacturing, mining, energy industry and natural hazards, high temperature, corrosion, erosion and radiation, challenge the performance and being of hardware.

In this work, high-temperature co-fired ceramic (HTCC) alumina and platinum have been used for a range of devices intended for aerospace applications at up to 1000°C.

The thermomechanics of a pressure sensor was investigated, and the interfacing was attained by wireless powering and reading. However, read range was limited and sensitivity decreased with temperature. Silver, electroplated after sintering, was found to remedy this until it eventually alloyed with platinum.

Copper was electroplated and oxidized for oxygen storage in a microcombustor, intended for sample preparation for optogalvanic spectroscopy (OGS) to indicate extraterrestrial life. Despite delamination, caused by residual stresses, the device operated successfully.

Conversely, pre-firing metallization by integration of platinum wires was studied. Freely suspended, and despite heat-induced shape irregularities, these were found advantageous over screen printed elements for gas heating, and temperature and pressure sensing. By fusing off the wires, spherical tips, allowing for impedance monitoring of microplasma sources in, e.g., OGS, were formed.

Microplasma sources can also be used for gas heating. This, together with screen printed and suspended resistive heaters, was evaluated in a microthruster, showing that plasma heating is the most effective, implying fuel consumption reduction in satellite propulsion.

In conclusion, HTCC alumina microdevices are thermally stable and could benefit several aerospace applications, especially with the complementary metallization schemes devised here.

Future developments are expected to include both processing and design, all with the intention of sensing, actuating and surviving in high-temperature environments.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 44
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1696
Keywords
high temperature, ceramics, microsystems, aerospace, sensors, thrusters
National Category
Aerospace Engineering Materials Engineering
Research subject
Military Technology
Identifiers
urn:nbn:se:fhs:diva-8743 (URN)978-91-513-0392-5 (ISBN)
Public defence
2018-09-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, 09:30 (Swedish)
Opponent
Supervisors
Available from: 2019-09-04 Created: 2019-09-04 Last updated: 2019-09-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Sturesson, Peter

Search in DiVA

By author/editor
Sturesson, Peter
By organisation
Military-Technology Division
In the same journal
Journal of Micromechanics and Microengineering
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 318 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf