Logo: to the web site of the Swedish Defence University

fhs.se
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Thermomechanical properties and performance of ceramic resonators for wireless pressure reading at high temperatures
Försvarshögskolan, Militärvetenskapliga institutionen (MVI), Militärtekniska avdelningen (MTA). Uppsala University. (Ångström Space Technology Centre)ORCID-id: 0000-0002-0501-0887
Uppsala University. (Division of Microsystems Technology)
Uppsala University. (Division of Microsystems Technology)
Uppsala University. (Division of Microsystems Technology)
Vise andre og tillknytning
2015 (engelsk)Inngår i: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 25, nr 9, artikkel-id 095016Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper reports on the design, fabrication, and thermomechanical study of ceramic LC resonators for wireless pressure reading, verified at room temperature, at 500 °C and at 1000 °C for pressures up to 2.5 bar. Five different devices were fabricated from high-temperature co-fired ceramics (HTCC) and characterized. Alumina green tape sheets were screen printed with platinum paste, micromachined, laminated, and fired. The resulting samples were 21 mm  ×  19 mm with different thicknesses. An embedded communicator part was integrated with either a passive backing part or with a pressure-sensing element, including an 80 µm thick and 6 mm diameter diaphragm. The study includes measuring thermally and mechanically induced resonance frequency shifts, and thermally induced deformations. For the pressure sensor device, contributions from changes in the relative permittivity and from expanding air trapped in the cavity were extracted. The devices exhibited thermomechanical robustness during heating, regardless of the thickness of the backing. The pressure sensitivity decreased with increasing temperature from 15050 ppm bar−1 at room temperature to 2400 ppm bar−1 at 1000 °C, due to the decreasing pressure difference between the external pressure and the air pressure inside the cavity.

sted, utgiver, år, opplag, sider
Bristol: Institute of Physics Publishing (IOPP), 2015. Vol. 25, nr 9, artikkel-id 095016
Emneord [en]
wireless reading, HTCC, pressure sensing, harsh environments, thermomechanical properties
HSV kategori
Forskningsprogram
Försvarssystem
Identifikatorer
URN: urn:nbn:se:fhs:diva-5854DOI: 10.1088/0960-1317/25/9/095016ISI: 000365167700023OAI: oai:DiVA.org:fhs-5854DiVA, id: diva2:899608
Forskningsfinansiär
Knut and Alice Wallenberg FoundationTilgjengelig fra: 2016-02-02 Laget: 2016-02-02 Sist oppdatert: 2019-09-04bibliografisk kontrollert
Inngår i avhandling
1. Sense, Actuate and Survive: Ceramic Microsystems for High-Temperature Aerospace Applications
Åpne denne publikasjonen i ny fane eller vindu >>Sense, Actuate and Survive: Ceramic Microsystems for High-Temperature Aerospace Applications
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In aerospace applications, but also in manufacturing, mining, energy industry and natural hazards, high temperature, corrosion, erosion and radiation, challenge the performance and being of hardware.

In this work, high-temperature co-fired ceramic (HTCC) alumina and platinum have been used for a range of devices intended for aerospace applications at up to 1000°C.

The thermomechanics of a pressure sensor was investigated, and the interfacing was attained by wireless powering and reading. However, read range was limited and sensitivity decreased with temperature. Silver, electroplated after sintering, was found to remedy this until it eventually alloyed with platinum.

Copper was electroplated and oxidized for oxygen storage in a microcombustor, intended for sample preparation for optogalvanic spectroscopy (OGS) to indicate extraterrestrial life. Despite delamination, caused by residual stresses, the device operated successfully.

Conversely, pre-firing metallization by integration of platinum wires was studied. Freely suspended, and despite heat-induced shape irregularities, these were found advantageous over screen printed elements for gas heating, and temperature and pressure sensing. By fusing off the wires, spherical tips, allowing for impedance monitoring of microplasma sources in, e.g., OGS, were formed.

Microplasma sources can also be used for gas heating. This, together with screen printed and suspended resistive heaters, was evaluated in a microthruster, showing that plasma heating is the most effective, implying fuel consumption reduction in satellite propulsion.

In conclusion, HTCC alumina microdevices are thermally stable and could benefit several aerospace applications, especially with the complementary metallization schemes devised here.

Future developments are expected to include both processing and design, all with the intention of sensing, actuating and surviving in high-temperature environments.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 44
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1696
Emneord
high temperature, ceramics, microsystems, aerospace, sensors, thrusters
HSV kategori
Forskningsprogram
Försvarssystem
Identifikatorer
urn:nbn:se:fhs:diva-8743 (URN)978-91-513-0392-5 (ISBN)
Disputas
2018-09-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, 09:30 (svensk)
Opponent
Veileder
Tilgjengelig fra: 2019-09-04 Laget: 2019-09-04 Sist oppdatert: 2019-09-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Sturesson, Peter

Søk i DiVA

Av forfatter/redaktør
Sturesson, Peter
Av organisasjonen
I samme tidsskrift
Journal of Micromechanics and Microengineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 302 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf