Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of Resistive and Plasma Heating on the Specific Impulse of a Ceramic Cold Gas Thruster
Swedish Defence University, Department of Military Studies, Science of Command and Control and Military Technology Division, Military Technology Systems Section.ORCID iD: 0000-0002-0501-0887
Uppsala Universitet. (Ångström Space Technology Centre)
Uppsala University. (Division of Microsystems)
Uppsala University. (Ångström Space Technology Centre)
Show others and affiliations
2019 (English)In: Journal of microelectromechanical systems, ISSN 1057-7157, E-ISSN 1941-0158, Vol. 28, no 2, p. 235-244Article in journal (Refereed) Published
Abstract [en]

Research and development of small satellites has continued to expand over the last decades. However, propulsion systems with adequate performance have persisted to be a great challenge. In this paper, the effects of three different heaters on the specific impulse and overall thrust efficiency of a cold gas microthruster are presented. They consisted of a conventional, printed resistive thick-film element, a freely suspended wire, and a stripline split-ring resonator microplasma source and were integrated in a single device made from high-temperature co-fired ceramics (HTCC). The devices were evaluated in two setups, where the first measured thrust and the other shock cell geometry. In addition, the resistive elements were evaluated as gas temperature sensors. The microplasma source was found to provide the greatest improvement in both specific impulse and thrust efficiency, increasing the former from an un- heated level of 44 s to 55 s when heating with a power of 1.1 W. This corresponded to a thrust efficiency of 53 %. This could be compared to the results from the wire and printed heaters which were 50 s and 18 %, and 45 s and 14 %, respectively. The combined results also showed that imaging the shock cells of a plasma heated thruster was a simple and effective way to determine its performance compared to the traditional thrust balance method.

Place, publisher, year, edition, pages
2019. Vol. 28, no 2, p. 235-244
Keywords [en]
microthruster, HTCC, resistive heating, plasma heating, specific impulse, shock cells
National Category
Aerospace Engineering
Research subject
Militärteknik
Identifiers
URN: urn:nbn:se:fhs:diva-8166DOI: 10.1109/JMEMS.2019.2893359OAI: oai:DiVA.org:fhs-8166DiVA, id: diva2:1248889
Available from: 2018-09-17 Created: 2018-09-17 Last updated: 2019-04-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Sturesson, Peter

Search in DiVA

By author/editor
Sturesson, Peter
By organisation
Military Technology Systems Section
In the same journal
Journal of microelectromechanical systems
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 217 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf